翻訳と辞書 |
Langlands group : ウィキペディア英語版 | Langlands group
Robert Langlands introduced a conjectural group ''LF'' attached to each local or global field ''F'', coined the Langlands group of ''F'' by Robert Kottwitz, that satisfies properties similar to those of the Weil group. In Kottwitz's formulation, the Langlands group should be an extension of the Weil group by a compact group. When ''F'' is local archimedean, ''LF'' is the Weil group of ''F'', when ''F'' is local non-archimedean, ''LF'' is the product of the Weil group of ''F'' with SU(2). When ''F'' is global, the existence of ''LF'' is still conjectural, though gives a conjectural description of it. The Langlands correspondence for ''F'' is a "natural" correspondence between the irreducible ''n''-dimensional complex representations of ''LF'' and, in the local case, the irreducible admissible representations of GL''n''(''F''), in the global case, the cuspidal automorphic representations of GL''n''(A''F''), where A''F'' denotes the adeles of ''F''. ==References==
* * *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Langlands group」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|